214 research outputs found

    A simple data compression scheme for binary images of bacteria compared with commonly used image data compression schemes

    Get PDF
    A run length code compression scheme of extreme simplicity, used for image storage in an automated bacterial morphometry system, is compared with more common compression schemes, such as are used in the tag image file format. These schemes are Lempel-Ziv and Welch (LZW), Macintosh Packbits, and CCITT Group 3 Facsimile 1-dimensional modified Huffman run length code. In a set of 25 images consisting of full microscopic fields of view of bacterial slides, the method gave a 10.3-fold compression: 1.074 times better than LZW. In a second set of images of single areas of interest within each field of view, compression ratios of over 600 were obtained, 12.8 times that of LZW. The drawback of the system is its bad worst case performance. The method could be used in any application requiring storage of binary images of relatively small objects with fairly large spaces in between

    Component-Tree Simplification through Fast Alpha Cuts

    Get PDF
    Tree-based hierarchical image representations are commonly used in connected morphological image filtering, segmentation and multi-scale analysis. In the case of component trees, filtering is generally based on thresholding single attributes computed for all the nodes in the tree. Alternatively, so-called shapings are used, which rely on building a component tree of a component tree to filter the image. Neither method is practical when using vector attributes. In this case, more complicated machine learning methods are required, including clustering methods. In this paper I present a simple, fast hierarchical clustering algorithm based on cuts of α-trees to simplify and filter component trees

    Gaussian-weighted moving-window robust automatic threshold selection

    Get PDF
    A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at different scales is determined. The threshold computed at the smallest scale at which the reliability is suffcient is used. The performance on 2-D images is evaluated on synthetic an natural images in the presence of varying background and noise. Results show the method deals better with these problems than earlier versions of RATS at most noise levels

    MORPHOMETRICAL PARAMETERS OF GUT MICROFLORA IN HUMAN VOLUNTEERS

    Get PDF
    The morphology of faecal microflora of nine healthy human volunteers was studied by digital image analysis of microscopic slides. Weekly specimens were collected during an 8-week period. Seven morphometrical parameters were derived: the means and medians of components 1, 2 and 3, and morphometrical entropy. Statistically significant differences among subjects were found for means of components 1 and 2. medians of components 1, 2 and 3, and entropy. The stability in normal circumstances provides an excellent basis for the detection of pathological change in gut flora balance

    Shape-Only Granulometries and Gray-Scale Shape Filters

    Get PDF

    Color Processing using Max-trees:A Comparison on Image Compression

    Get PDF
    • …
    corecore